

Spin-off of the University of Catania

First Person (Egocentric) Vision: History and Applications

Francesco Ragusa

First Person Vision@Image Processing Laboratory - http://iplab.dmi.unict.it/fpv

Next Vision - http://www.nextvisionlab.it/

Department of Mathematics and Computer Science - University of Catania

francesco.ragusa@unict.it - https://francescoragusa.github.io/

Università di Catania

FPV @ IPLAB Group

Luigi Seminara

Ros

cavo

Rosario Forte

ene D'Ambr

IMAGE PROCESSING LABORATORY http://iplab.dmi.unict.it/fpv

NEXT VISI ⁽⁶⁾/N

http://www.nextvisionlab.it/

16 Members 1 Full Professor 1 Assistant Professor 1 Researcher 3 Post Docs 7 PhD Students 2 Master Students 1 Lab Assistant The slides of this tutorial are available online at: <u>https://francescoragusa.github.io/visigrapp2024</u>

- 1) Part I: History and motivations [09.00 10.30]
 - a) Agenda of the tutorial;
 - b) Definitions, motivations, history and research trends of First Person (egocentric) Vision;
 - c) Seminal works in First Person (Egocentric) Vision;
 - d) Differences between Third Person and First Person Vision;
 - e) First Person Vision datasets;
 - f) Wearable devices to acquire/process first person visual data;
 - g) Main research trends in First Person (Egocentric) Vision;

Coffee Break [10.30 - 10.45]

Keynote presentation: Gerhard Rigoll [10.45 – 12.00]

- 1) Part II: Fundamental tasks for First Person Vision systems [12.00 13.00]
 - a) Localization;
 - b) Hand/Object Detection;
 - c) Action/Activity Recognition;
 - d) Egocentric Human-Object Interaction;
 - e) Anticipation;
 - f) Industrial Applications;
 - g) Conclusion.

Part I History and Motivations

After personal computers and smartphones, wearable devices are the <u>third wave of computing</u>

Personal Computers:

computing for the mass, but not mobile and not context aware dedicated access to computing – Marc Pollefeys, Lab Director, Microsoft Mixed Reality and Al Zurich

Smartphones: mobile computing is always accessible, but forces to switch between the digital and real world

Eyeworn Devices:

computing everywere with minimal switch between real and digital worlds

Università di Catania An AI-Powered Virtual Assistant

"her" 2013 movie

A wearable device which perceives the world from our "egocentric" point of view is perfect for implementing a virtual assistant

(Egocentric) Computer Vision is Fundamental!

First Person Camera Camera \odot **Third Person**

Wearable Camera

- ✓ Content is always relevant
- ✓ Intrinsically mobile
- × High variability
- × Operational constraints

Fixed Camera

- ✓ Easy to setup
- ✓ Controlled Field of View
- × Doesn't always see everything
- × Not really portable

When Did it All Begin?

HOMERSAPIEN

Università Bush's Memex, 1945

"Certainly, progress in photography is not going to stop. [...] Let us project this trend ahead to a logical, if not inevitable, outcome. The camera hound of the future wears on his forehead a lump a little larger than a walnut."

https://www.youtube.com/watch?v=c539cK58ees

A TOP U.S. SCIENTIST FORESEES A POSSIBLE FUTURE WORLD IN WHICH MAN-MADE MACHINES WILL START TO THINK

by VANNEVAR BUSH

Condensed from the Atlantic Monthly, 3Ay 1945

This has not been a scientists? were it has been a war in which all have had a part. The scientists, burying their old professional comparison in the demond of a common case, have shared greatly and learned much. It has been exhibitiating to work in effective partnership. What are the scientists to do test?

For the biologists, and particularly for the medical scientists, there can be furth indexinon, for their war work has hardly required them to leave the old paths. Many indeed have been able to carry on their war essench in their familiar peacenting laboratories. Their objectives transin such the same.

It is the physicians who have been theown most violently of strade, who have left academic putonits for the making of strange destructive galgets, who have had to device new aschede for their transmispated assignment. They have done their part on the devices that made it possible to stern back the convex. They have worked in combined effort with the physicians of our allies. They have delt within themselves the stir of adhevement. They have been part of a great team. Now one asks where they will find objective workpot their bere.

There is a growing monotain of research, Bot there is increased evidence that we are being begged down today as specialization extends. The investigator intagered by the inclungs and conclusions of theorards of other workern-conclusion which he cannot find time to grazy, such less to erremember, as they appear. Yet specialization becomes increasing precisions for progr-

true, and the effort to bridge between disciplines is correspondingly superficial.

Professionally out methods of transmitting and reviewing the results of reventsh are generations old and by now are totally indequate for their parpers. If the aggregate must spent in writing tcholarly works and in reading them could be evaluated, the ratio between these amounts of time might

them could be evaluated, the tatus between these amounts of time might well be standing. These who consciences also attraje to keep abreast of uptern through even in restance fields, by close and constrainess tracking might well by away from an examination calculated to show how much of the previous month's efforts could be produced on call.

Mendel's concept of the laws of generics was how to the world for a generation because his publication did not reach the few who were capable of grapping and extending it. This nest of carantrophy is undoabledly being repeated all about us a realy significant attainments become loss in the mass of the inconsequential.

Publication has been extended far beyond our percent ability to make realuse of the record. The summation of human experience is being exponded at a production tance, and the means we use for the saling through the consequent maze to the momentually important item in the same as was used in the days of square-ngged highs.

But there are signs of a change as new and powerful instrumentalities come into use. Proceedin capable of seeing things in a physical sense, adsumed photography which can record what is seen or even what is not, thermionic tables capable of controlling potent forces under the guilance of

^M Università Head Mounted Display (1968)

In 1968 Ivan Sutherland invented the first "head mounted display" (HMD), a <u>stereoscopic</u> display mounted on the head of the user which allowed to show wireframe rooms.

Due to its weight, the display was fixed to the ceiling with a pipe, for which it was called «sword of Damocles».

Università di Catania The Birth of Wearable Computing

Steve Mann's "wearable computer" and "reality mediator" inventions of the 1970s have evolved into what looks like ordinary eyeglasses.

In the 80s and 90s Steve Mann (PhD in Media Arts and Sciences at MIT, 1997) invented a number of wearable computers featuring video capabilities, computing capabilities, and a werable screen for feedback. Steve Mann is often referred to as «the father of wearable computing»

Università First Wearable Computing Applications

Meta-Vision

Visual Orbits

Spatialized Reminders

Spatialized Shopping List

Visual Filters

Steve Mann. "Compositing multiple pictures of the same scene." *Proc. IS&T Annual Meeting, 1993.* Steve Mann, "Wearable computing: a first step toward personal imaging," in *Computer*, vol. 30, no. 2, pp. 25-32, Feb. 1997.

Università di Catania MIT Media Lab in 1997

Università di Catania Egocentric Computer Vision: The Goal

Clip from movie Terminator 2-Judgment day: <u>https://youtu.be/9MeaaCwBW28</u> Ref: <u>https://www.redsharknews.com/vr_and_ar/item/3539-terminator-2-vision-the-augmented-reality-standard-for-25-years</u>

Università MIT Media Lab Seminal Works, late 1990s

Augmented Reality Through Wearable Computing

Thad Starner, Steve Mann, Bradley Rhodes, Jeffrey Levine Jennifer Healey, Dana Kirsch, Roz Picard, and Alex Pentland

> The Media Laboratory Massachusetts Institute of Technology (augumented reality)

997

Visual Contextual Awareness in Wearable Computing

Thad StarnerBernt SchieleAlex PentlandMedia Laboratory, Massachusetts Institute of Technology

(location and task recognition)

An Interactive Computer Vision System DyPERS: Dynamic Personal Enhanced Reality System

Bernt Schiele, Nuria Oliver, Tony Jebara, and Alex Pentland Vision and Modeling Group MIT Media Laboratory, Cambridge, MA 02139, USA

(object recognition, media memories)

Wearable Visual Robots

W.W. Mayol, B. Tordoff and D.W. Murray University of Oxford, Parks Road, Oxford OX1 3PJ, UK (active vision)

Context-based vision system for place and object recognition

Antonio TorralbaKevin P. MurphyWilliam T. FreemanMark A. RubinMIT AI labMIT AI labMIT AI labLincoln LabsCambridge, MA 02139Cambridge, MA 02139Cambridge, MA 02139Lexington, MA 02420(location/object recognition)

Real-Time Localisation and Mapping with Wearable Active Vision *

Andrew J. Davison, Walterio W. Mayol and David W. Murray Robotics Research Group Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK (active vision, SLAM)

2003

Wearable Hand Activity Recognition for Event Summarization W.W. Mayol D.W. Murray

Department of Computer Science University of Bristol D.W. Murray Department of Engineering Science University of Oxford

(hand activity recognition)

Temporal Segmentation and Activity Classification from First-person Sensing

Ekaterina H. Spriggs, Fernando De La Torre, Martial Hebert Carnegie Mellon University. (activity classification)

Figure-Ground Segmentation Improves Handled Object Recognition in Egocentric Video

Xiaofeng Ren Intel Labs Seattle 1100 NE 45th Street, Seattle, WA 98105 (handheld ob

RenChunhui GuSeattleUniversity of California at BerkeleySeattle, WA 98105Berkeley, CA 94720(handheld object recognition)

Neck worn camera with a projector and a gesture-based user interface.

«to give people access to information without requiring that the user changes any of their behavior»

Pattie Maes & Pranav Mistry (MIT) @ TED https://www.ted.com/talks/pattie maes demos the sixth sense

A COMMON HARDWARE PLATFORM WAS MISSING!

Università Microsoft SenseCam, 2004

https://www.microsoft.com/en-us/research/project/sensecam/

- SenseCam is a wearable camera that takes photos automatically;
- Originally conceived as a «personal blackbox» accident recorder;
- Used in the MyLifeBits project, inspired by Bush's Memex;
- Inspired a series of conferences and many research papers.

Bell, Gordon, and Jim Gemmell. Your life, uploaded: The digital way to better memory, health, and productivity. Penguin, 2010.

Università di Catania Research using Microsoft SenseCam

Do Life-Logging Technologies Support Memory for the Past? An Experimental Study Using SenseCam

Abigail Sellen, Andrew Fogg, Mike Aitken*, Steve Hodges, Carsten Rother and Ken WoodMicrosoft Research Cambridge*Behavioural & Clinical Neuroscience Institute7 JJ Thomson Ave, Cambridge, UK, CB3 0FBDept. of Psychology, University of Cambridge

(health, memory augmentation)

(a) Reading in bed

MyPlaces: Detecting Important Settings in a Visual Diary

Michael Blighe and Noel E. O'Connor Centre for Digital Video Processing, Adaptive Information Cluster Dublin City University, Ireland {blighem, oconnorn}@eeng.dcu.ie

(lifelogging, place recognition)

Constructing a SenseCam Visual Diary as a Media Process

Hyowon Lee, Alan F. Smeaton, Noel O'Connor, Gareth Jones, Michael Blighe, Daragh Byrne, Aiden Doherty, and Cathal Gurrin Centre for Digital Video Processing & Adaptive Information Cluster, Dublin City University

(lifelogging, multimedia retrieval)

2008

(b) Having dinner

http://getnarrative.com/

Multi-face tracking by extended bag-of-tracklets in egocentric photo-streams

Maedeh Aghaei^{a,*}, Mariella Dimiccoli^{a,b}, Petia Radeva^{a,b} (lifelogging, face tracking)

SR-clustering: Semantic regularized clustering for egocentric photo streams segmentation

Mariella Dimiccoli^{a,c,1,*}, Marc Bolaños^{a,1,*}, Estefania Talavera^{a,b}, Maedeh Aghaei^a, Stavri G. Nikolov^d, Petia Radeva^{a,c,*}

(lifelogging, event segmentation)

Toward Storytelling From Visual Lifelogging: An Overview

2017

Marc Bolaños, Mariella Dimiccoli, and Petia Radeva

(lifelogging, survey)

Università di Catania What About Video?

different wearing modalities

head-mounted

chest-mounted

helmet-mounted

https://www.youtube.com/watch?v=D4iU-EOJYK8

Fast Unsupervised Ego-Action Learning for First-Person Sports Videos

Kris M. Kitani UEC Tokyo Tokyo, Japan Takahiro Okabe, Yoichi Sato University of Tokyo Tokyo, Japan Akihiro Sugimoto National Institute of Informatics Tokyo, Japan

(unsupervised action recognition, video indexing)

Social Interactions: A First-Person Perspective

go-action categor

201

20

ω

360p* 💭 🗗 靠

Alireza Fathi¹, Jessica K. Hodgins^{2,3}, James M. Rehg¹ (detection and recognition of social interactions)

Story-Driven Summarization for Egocentric Video

Zheng Lu and Kristen Grauman University of Texas at Austin

(egocentric video sumarization)

Personal Location

Segmentation System

car

reject

Antonino Furnari, Giovanni Maria Farinella, Senior Member, IEEE, and Sebastiano Battiato, Senior Member, IEEE

(localization, indexing, context-aware computing)

Egocentric Future Localization

(a) browsable temporally segmented video

car

Hyun Soo Park Jyh-Jing Hwang Yedong Niu Jianbo Shi

(future localization, navigation)

(c) Egocentric RGBD image

(a) Ego-stereo cameras

(b) Geometry

Università Gaze Trackers

Eye movements and the control of actions in everyday life

Michael F. Land

Prototype by Land (1993)

Gaze is important in Egocentric Vision!

Tobii Pro Glasses 2 (2014) Microsoft He

Microsoft HoloLens 2 (2016)

Mobile Eye-XG (2013) Pupil Eye Trackers (2014 -)

Learning to Predict Gaze in Egocentric Video

Yin Li, Alireza Fathi, James M. Rehg (gaze prediciton, action recognition)

You-Do, I-Learn: Egocentric unsupervised discovery of objects and their modes of interaction towards video-based guidance

Dima Damen*, Teesid Leelasawassuk, Walterio Mayol-Cuevas

(object usage discovery, assistance)

MECCANO: A multimodal egocentric dataset for humans behavior understanding in the industrial-like domain

Francesco Ragusa^{*}, Antonino Furnari, Giovanni Maria Farinella

(gaze prediciton, procedural video)

Università Circa 2017 – most of the discussion still in workshops

Workshop on Egocentric (First Person) Vision ACVR

ONE DOES NOT SIMPLY

imgflip.com

http://www.cs.cmu.edu/~espriggs/ cmu-mmac/annotations/

http://www.cbi.gatech.edu/fpv/

https://www.csee.umbc.edu/~hpirsiav/ papers/ADLdataset/

https://allenai.org/plato/charades/

http://www.cbi.gatech.edu/fpv/

Dima Damen, Hazel Doughty, Giovanni M. Farinella, Antonino Furnari, Evengelos Kazakos, Jian Ma, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, Michael Wray (2021). Rescaling Egocentric Vision . International Journal on Computer Vision (IJCV) , abs/2006.13256
EPIC-KITCHENS

TEAM

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Davide Moltisanti, Jonathan Munro and Toby Perrett, Will Price, Michael Wray (2021). The EPIC-KITCHENS Dataset: Collection, Challenges and Baselines. PAMI, 43(11), pp. 4125-4141.

Dima Damen Principal Investigator University of Bristol United Kingom

Davide Moltisanti (Apr 2017 -) University of Bristol

Antonino Furnari (Jul 2017 -) University of Catania

Sanja Fidler Co-Investigator University of Toronto Canada

Giovanni Maria Farinella Co-Investigator University of Catania Italy

Toby Perrett (Apr 2017 -) University of Bristol

Will Price (Oct 2017 -) University of Bristol

Jonathan Munro (Sep 2017 -) University of Bristol

Michael Wrav

(Apr 2017 -)

University of Bristol

Evangelos Kazakos

(Sep 2017 -)

University of Bristol

Hazel Doughty

(Apr 2017 -)

University of Bristol

KITCHENS

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Davide Moltisanti, Jonathan Munro and Toby Perrett, Will Price, Michael Wray (2021). The EPIC-KITCHENS Dataset: Collection, Challenges and Baselines. PAMI, 43(11), pp. 4125-4141.

2024 Challenges

- Semi-Supervised Video Object Segmentation Challenge
- Hand-Object Segmentation Challenge
- TREK-150 Object Tracking Challenge
- EPIC-SOUNDS Audio-Based Interaction Recognition
- Action Recognition
- Action Detection
- Action Anticipation
- UDA for Action Recognition
- Multi-Instance Retrieval

Università di Catania EPIC-KITCHENS Workshops & Challenges

EPIC-KITCHENS-100- 2022 Challenges Report

EPIC-KITCHENS-100- 2023 Challenges Report

Dima Damen, Jacob Chalk, Ahmad Darkhalil, Toby Perrett, Daniel Whettam, Saptarshi Sinha, Michael Wray, Bin Zhu University of Bristol, UK

Antonino Furnari, Francesco Ragusa, Giovanni Maria Farinella University of Catania, Italy Dandan Shan, David Fouhey University of Michigan, US

Matteo Dunnhofer, Christian Micheloni University of Udine, Italy Jacsung Huh, Andrew Zisserman University of Oxford, UK

Abstract

This report presents the findings from the 5th EPIC-KITCHENS-100 challenges, opened from Jan 2023 and concluded on the 1st of June 2023. It serves as an introduction to all technical reports that were submitted to the 11th EPIC@CVPR2023 workshop, and an official announcement of the winners.

The report covers 4 new challenges, announced for the first time in the 2023 round as well as 5 recurring challenges

1. Datasets

The challenges cover three datasets publicly available, The 5 recurring challenges are based on the publicly available EPIC-KITCHENS-100 dataset. In summary, EPIC-KITCHENS-100 provides 20M frames of egocentric footage, captured in an unscripted manner, with carefully collated annotations of 90K fine-grained actions. Details of how the dataset was collected and annotated are available in our IJCV paper [8]. The challenges are: Action Recognition, Action Anticipation, Action Detection, Unsupervised The TREK-150 Object Tracking is based on the TREK-150 dataset [20] released in 2021. The challenge focuses on single object tracking in egocentric videos.

Finally, one challenge is based on EPIC-SOUNDS [27]. Released last year as well, EPIC-SOUNDS annotates 78.4k categorised segments of audible events and actions, distributed across 44 classes. A challenge on audio-only action recognition was run this year as: EPIC-SOUNDS Audio-Based Interaction Recognition.

Each challenge we released codebase with pre-trained models, features and evaluation scripts:

- Action Recognition at https://github.com/ epic-kitchens/Cl-Action-Recognition:
 Five pre-trained models were made available using the codebases: TSN, TRN, TBN, TSM and SlowFast, as well as evaluation script.
- Action Detection at https://github.com/ epic-kitchens/C2-Action-Detection: with pre-extracted features, a baseline using BMN model and evaluation script.
- Action Anticipation at https://github.com/ epic-kitchens/C3-Action-Anticipation with pre-extracted features, RULSTM base model and

IMPRESSIVE MOST IMPRESSIVE

BUTYOU ARE NOT A JEDI YET

makeameme.org

Can We Scale?

Consortium

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Universidad de

los Andes

Colombia

FACEBOOK AI

Ego4D: Around the World in 3,000 Hours of Egocentric Video 84 authors

Kristen Grauman^{1,2}, Andrew Westbury¹, Eugene Byrne^{*1}, Zachary Chavis^{*3}, Antonino Furnari^{*4}, Rohit Girdhar¹¹, Jackson Hamburger¹¹, Hao Jiang¹⁵, Miao Liu^{*6}, Xingyu Liu^{*7}, Miguel Martin¹¹, Tushar Nagarajan^{*1,2}, Ilija Radosavovic^{*8}, Santhosh Kumar Ramakrishnan^{*1,2}, Fiona Ryan^{*6}, Jayant Sharma*3, Michael Wray*9, Mengmeng Xu*10, Eric Zhongcong Xu*11, Chen Zhao*10, Siddhant Bansal¹⁷, Dhruv Batra¹, Vincent Cartillier^{1,6}, Sean Crane⁷, Tien Do³, Morrie Doulaty¹³. Akshay Erapalli¹³, Christoph Feichtenhofer¹, Adriano Fragomeni⁹, Qichen Fu⁷, Christian Fuegen¹³, Abrham Gebreselasie¹², Cristina González¹⁴, James Hillis⁵, Xuhua Huang⁷, Yifei Huang¹⁵, Wenqi Jia⁶, Weslie Khoo¹⁶, Jachym Kolar¹³, Satwik Kottur¹³, Anurag Kumar⁵, Federico Landini¹³, Chao Li⁵, Zhenqiang Li¹⁵, Karttikeya Mangalam^{1,8}, Raghava Modhugu¹⁷ Jonathan Munro⁹, Tullie Murrell¹, Takumi Nishiyasu¹⁵, Will Price⁹, Paola Ruiz Puentes¹⁴, Merey Ramazanova¹⁰, Leda Sari⁵, Kiran Somasundaram⁵, Audrey Southerland⁶, Yusuke Sugano¹⁵ Ruijie Tao¹¹, Minh Vo⁵, Yuchen Wang¹⁶, Xindi Wu⁷, Takuma Yagi¹⁵, Yunyi Zhu¹¹, Pablo Arbeláez^{†14}, David Crandall^{†16}, Dima Damen^{†9}, Giovanni Maria Farinella^{†4}, Bernard Ghanem^{†10}, Vamsi Krishna Ithapu^{†5}, C. V. Jawahar^{†17}, Hanbyul Joo^{†1}, Kris Kitani^{†7}, Haizhou Li^{†11}, Richard Newcombe^{†5}, Aude Oliva^{†18}, Hyun Soo Park^{†3}, James M. Rehg^{†6}, Yoichi Sato^{†15}, Jianbo Shi^{†19}, Mike Zheng Shou^{†11}, Antonio Torralba^{†18}, Lorenzo Torresani^{†1,20}, Mingfei Yan^{†5}, Jitendra Malik^{1,8}

 ¹Facebook AI Research (FAIR), ²University of Texas at Austin, ³University of Minnesota, ⁴University of Catania, ⁵Facebook Reality Labs, ⁶Georgia Tech, ⁷Carnegie Mellon University, ⁸UC Berkeley, ⁹University of Bristol, ¹⁰King Abdullah University of Science and Technology, ¹¹National University of Singapore,
¹²Carnegie Mellon University Africa, ¹³Facebook, ¹⁴Universidad de los Andes, ¹⁵University of Tokyo, ¹⁶Indiana University, ¹⁷International Institute of Information Technology, Hyderabad, ¹⁸MIT, ¹⁹University of Pennsylvania, ²⁰Dartmouth

Università Benchmarks and Challenges

Università EGO4D Workshop & Challenges

1st Ego4D Workshop @ CVPR 2022

Held in conjunction with 10th EPIC Workshop

19 and 20 June 2022

2nd International Ego4D Workshop @ ECCV 2022

24 October 2022

3rd International Ego4D Workshop @ CVPR 2023

Held in conjunction with 11th EPIC Workshop

19 June 2023

Università di Catania Happy Ending?

Università di Catania EGO-EXO4D Team

https://ego-exo4d-data.org/

Università <u>liCatania</u> **Paper**

Ego-Exo4D: Understanding Skilled Human Activity from First- and Third-Person Perspectives

Kristen Grauman^{1,2}, Andrew Westbury¹, Lorenzo Torresani¹, Kris Kitani^{1,3}, Jitendra Malik^{1,4}, Triantafyllos Afouras^{*1}, Kumar Ashutosh^{*1,2}, Vijay Baiyya^{*5}, Siddhant Bansal^{*6,7}, Bikram Boote^{*8}, Eugene Byrne^{*1,9}, Zach Chavis^{*10}, Joya Chen^{*11}, Feng Cheng^{*1}, Fu-Jen Chu^{*1}, Sean Crane^{*9}, Avijit Dasgupta^{*7}, Jing Dong^{*5}, Maria Escobar^{*12}, Cristhian Forigua^{*12}, Abrham Gebreselasie^{*9}, Sanjay Haresh^{*13}, Jing Huang^{*1}, Md Mohaiminul Islam^{*14}, Suyog Jain^{*1}, Rawal Khirodkar^{*9}, Devansh Kukreja^{*1}, Kevin J Liang^{*1}, Jia-Wei Liu^{*11}, Sagnik Majumder^{*1,2}, Yongsen Mao^{*13}, Miguel Martin^{*1} Effrosyni Mavroudi^{*1}, Tushar Nagarajan^{*1}, Francesco Ragusa^{*15}, Santhosh Kumar Ramakrishnan^{*2}, Luigi Seminara^{*15}, Arjun Somayazulu^{*2}, Yale Song^{*1}, Shan Su^{*16}, Zihui Xue^{*1,2}, Edward Zhang^{*16}, Jinxu Zhang^{*16}, Angela Castillo¹², Changan Chen², Xinzhu Fu¹¹, Ryosuke Furuta¹⁷, Cristina González¹², Prince Gupta⁵, Jiabo Hu¹⁸, Yifei Huang¹⁷, Yiming Huang¹⁶, Weslie Khoo¹⁹, Anush Kumar¹⁰, Robert Kuo¹⁸, Sach Lakhavani⁵, Miao Liu¹⁸, Mi Luo², Zhengyi Luo³, Brighid Meredith¹⁸, Austin Miller¹⁸, Oluwatumininu Oguntola¹⁴, Xiaqing Pan⁵, Penny Peng¹⁸, Shraman Pramanick²⁰, Merey Ramazanova²¹, Fiona Ryan²², Wei Shan¹⁴, Kiran Somasundaram⁵, Chenan Song¹¹, Audrey Southerland²², Masatoshi Tateno¹⁷, Huiyu Wang¹, Yuchen Wang¹⁹, Takuma Yagi¹⁷, Mingfei Yan⁵, Xitong Yang¹, Zecheng Yu¹⁷, Shengxin Cindy Zha¹⁸, Chen Zhao²¹, Ziwei Zhao¹⁹, Zhifan Zhu⁶, Jeff Zhuo¹⁴, Pablo Arbeláez^{†12}, Gedas Bertasius^{†14}, David Crandall^{†19}, Dima Damen^{†6}, Jakob Engel^{†5}, Giovanni Maria Farinella^{†15}, Antonino Furnari^{†15}, Bernard Ghanem^{†21}, Judy Hoffman^{†22}, C. V. Jawahar^{†7}, Richard Newcombe^{†5}, Hyun Soo Park^{†10}, James M. Rehg^{†8}, Yoichi Sato^{†17}, Manolis Savva^{†13}, Jianbo Shi^{†16}, Mike Zheng Shou^{†11}, and Michael Wray^{†6}

"Release Brakes"

Keystep Recognition

Proficiency Estimation

Relation

Pose Estimation

First Joint Egocentric Vision (EgoVis) Workshop Held in Conjunction with CVPR 2024 17 June 2024 - Seattle, USA

Ego-Exo4D

Ego4D

EPIC-Kitchens

^{*} Università What about Industrial Domain?

MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain

F. Ragusa^{1,2}, A. Furnari^{1,2}, G. M. Farinella^{1,2}

¹FPV@IPLab, Department of Mathematics and Computer Science - University of Catania, Italy ²Next Vision s.r.l., Spin-off of the University of Catania, Italy

Running ICIAP competition with Prize!

Previous version: The MECCANO Dataset: Understanding Human-Object Interactions from Egocentric Videos in an Industrial-like Domain

Assembly101: A Large-Scale Multi-View Video Dataset for Understanding Procedural Activities

Abstract

ENIGMA-51: Towards a Fine-Grained Understanding of Human Behavior in Industrial Scenarios

ENIGMA-51 is a new egocentric dataset acquired in an industrial scenario by 19 subjects who followed instructions to complete the repair of electrical boards using industrial tools (e.g., electric screwdriver) and equipments (e.g., oscilloscope). The 51 egocentric video sequences are densely annotated with a rich set of labels that enable the systematic study of human behavior in the industrial domain. We provide benchmarks on four tasks related to human behavior: 1) untrimmed temporal detection of human-object interactions, 2) egocentric human-object interaction detection, 3) short-term object interaction anticipation and 4) natural language understanding of intents and entities. Baseline results show that the ENIGMA-51 dataset poses a challenging benchmark to study human behavior in industrial scenarios.

Code

Data

Università The MECCANO Dataset

F. Ragusa, A. Furnari, G. M. Farinella. MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain. Computer Vision and Image Understanding (CVIU), 2023 (<u>https://arxiv.org/abs/2209.08691</u>).

^M Università di Catania Data Annotation: Temporal Verb Annotations

F. Ragusa, A. Furnari, G. M. Farinella. MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain. Computer Vision and Image Understanding (CVIU), 2023 (<u>https://arxiv.org/abs/2209.08691</u>).

00:50

Università di Catania Data Annotation: Active Object Bounding Boxes

gray_bar

bar

red_perforated_bar

wheels axle

handlebar

partial model

gray_angled_bar

bolt red_3_junction_bar

wrench

tire

rim

white_bar

washer

instruction_booklet

cylinder

red_angled_bar

screw

red_4_junction_bar

screwdriver

F. Ragusa, A. Furnari, G. M. Farinella. MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain. Computer Vision and Image Understanding (CVIU), 2023 (https://arxiv.org/abs/2209.08691).

Università di Catania Data Annotation: Action Annotations

Action instances	ID	Action	ID	Action	ID	Action
	0	check_booklet	20 put_sc	crewdriver	40	take_red_perforated_junction_bar
	1	align_screwdriver_to_screw	21 put_re	ed_perforated_junction_bar	41	fit_rim_tire
2000 -	2	take_partial_model	22 put_gr	ray_angled_perforated_bar	42	take_rim
	3	plug_rod	23 take_r	ed_perforated_bar	43	take_red_4_perforated_junction_bar
	4	screw_screw_with_screwdriver	24 take_g	gray_perforated_bar	44	put_screw
	5 1	take_bolt	25 take_r	ed_angled_perforated_bar	45	put_rod
	6	align_objects	26 tighter	n_nut_with_hands	46	put_washer
1200 -	7	take_washer	27 take_v	white_angled_perforated_bar	47	unscrew_screw_with_screwdriver
	8	take_screw	28 take_r	od	48	put_red_perforated_bar
	9	put_white_angled_perforated_bar	29 put_ti	re	49	put_wrench
	10	unscrew_screw_with_hands	30 put_ro	oller	50	put_bolt
1000 -	11	take_screwdriver	31 pull_p	artial_model	51	take_wheels_axle
	12	plug_handlebar	32 pull_s	crew	52	put_wheels_axle
	13	plug_screw	33 take_g	gray_angled_perforated_bar	53	put_red_angled_perforated_bar
	14	tighten_nut_with_wrench	34 take_t	ire	54	put_red_4_perforated_junction_bar
	15	put_gray_perforated_bar	35 pull_ro	bd	55	take_objects
500 -		align_wrench_to_bolt	36 take_v	wrench	56	put_objects
	17	put_partial_model	37 brows	e_booklet	57	loosen_bolt_with_hands
	18	screw_screw_with_hands	38 take_r	oller	58	put_booklet
	19	take_booklet	39 take_h	nandlebar	59	put_rim
。					60	put_handlebar

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

align screadriver to screw

F. Ragusa, A. Furnari, G. M. Farinella. MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain. Computer Vision and Image Understanding (CVIU), 2023 (<u>https://arxiv.org/abs/2209.08691</u>).

Egocentric Human-Object Interaction

$$O = \{o_1, o_2, \dots, o_n\} \qquad V = \{v_1, v_2, \dots, v_m\}$$
$$e = (v_h, \{o_1, o_2, \dots, o_i\})$$

<take, screwdriver>

<screw, {screwdriver, screw, partial_model}>

Università di Catania Data Annotation: Next Active Object Annotations

(«take, bolt»)

start frame

18000

1) Action Recognition

start frame end frame

RGB+Gaze Depth+Gaze take screwdriver objects screwdriver screwdrive

2) Active Object Detection and Recognition

3) EHOI Detection

<take>

<gray perforated bar>

τ_a= 2.00

Ground Truth action: take bolt

take bolt, align objects, tighten bolt, plug screw, check booklet

take bolt, align objects plug screw, tighten bolt, check booklet

 $\tau_a = 1.00$

take bolt, align objects, plug screw, check booklet, tighten bolt

take bolt , align objects plug screw, check booklet, take screwdriver

5) Next-Active Object (NAO) Detection

Time to start = 1.6s

Time to start = 0.8s

Given multiple videos of a task, the goal is to identify the key-steps and their order to perform the task.

 EgoProceL (proposed)
CMU-MMAC
EGTEA Gaze+ 4) MECCANO5) EPIC-Tent

B. Siddhant, A. Chetan, C. V. Jawahar, My View is the Best View: Procedure Learning from Egocentric Videos. In European Conference on Computer Vision (ECCV), 2022.

NEXT VISI ⁄ ŷ/N

Spin-off of the University of Catania

Leaderboard 2023

Rank	Team	Top-1 Accuracy	Top-5 Accuracy	Technical Report
<mark>O</mark> 1	UCF	52.82	83.85	\checkmark
2	UNIBZ	52.57	81.53	\checkmark
3	LUBECK	51.82	83.35	\checkmark
4	MACAU	50.30	78.46	\checkmark
5	Baseline (RGB-Depth- Gaze)	49.66	77.82	
6	TORONTO	49.52	74.21	\checkmark
7	Baseline (RGB-Depth)	49.49	77.61	
8	CUNY	24.69	52.46	\checkmark

https://iplab.dmi.unict.it/MECCANO/challenge.html

Università di Catania ENIGMA-51 Dataset

We designed two procedures consisting of instructions that involve humans interacting with the objects present in the laboratory to achieve the goal of repairing two electrical boards

ENIGMA-51: Towards a Fine-Grained Understanding of Human Behavior in Industrial Scenarios. F. Ragusa R. Leonardi, M. Mazzamuto, C. Bonanno, R. Scavo, A. Furnari, G. M. Farinella. WACV (2024).

Past Frames

Human-Object Interactions

Hand-Object Masks

Environment 3D Model

Object 3D Models

ENIGMA-51: Towards a Fine-Grained Understanding of Human Behavior in Industrial Scenarios. F. Ragusa R. Leonardi, M. Mazzamuto, C. Bonanno, R. Scavo, A. Furnari, G. M. Farinella. WACV (2024).

Interaction Frame

Untrimmed temporal detection of human-object interactions

Egocentric human-object interaction detection

Short-term object interaction anticipation

Natural language understanding of intents and entities

https://www.youtube.com/watch?v=YAXTQL3jPFk

- Google envisioned a future in which smart glasses replace smartphones;
- The goal of Google Glass was to make computation available to the user when they need it and get out of the way when they dont.

Università The Failure of Google Glass, 2014

https://www.youtube.com/watch?v=ClvI9fZaz6M

Google Glass failed because of the lack of clear use cases + privacy issues.

Is this it?

Success Cases

Università Epson Moverio Smart Glasses for Augmented Reality, since 2012

Moverio BT-40	Moverio BT-40S	Moverio BT-45CS
USB-C connectivity	Intelligent Controller	Centred 8MP camera
Second screen privacy	Commercial applications	Intelligent Controller
OUR PRICE:	OUR PRICE:	OUR PRICE:
£579.00 incl. VAT (£482.50 ex. VAT)	£1,002.00 incl. VAT (£835.00 ex. VAT)	£1,836.00 incl. VAT (£1,530.00 ex. VAT)
In Stock	In Stock	In Stock
Learn more ►	Learn more ►	Learn more ►
Buy Now ►	Buy Now ►	Buy Now
FIND A DEALER ►	FIND A DEALER ►	FIND A DEALER ►
REQUEST A CALLBACK	REQUEST A CALLBACK	REQUEST A CALLBACK
SUPPORT ►	SUPPORT ►	SUPPORT ►
focused a	pplication sce	enarios

https://www.epson.co.uk/en GB/search/allproducts?text=smart+glasses

https://www.vuzix.com/

Health, assistive technologies

https://www.orcam.com/

https://www.orcam.com/

Microsoft HoloLens, since 2016 – HoloLens2 in 2020

Mixed Reality

https://www.microsoft.com/hololens

https://youtu.be/eqFqtAJMtYE

Università di Catania Microsoft HoloLens2 – Towards Industrial Applications

HoloLens 2

An ergonomic, untethered self-contained holographic device with enterprise-ready applications to increase user accuracy and output.

HoloLens 2 Industrial Edition

A HoloLens 2 that is designed and tested to support regulated environments such as clean rooms and hazardous locations.

Trimble XR10 with HoloLens 2

A hardhat-integrated HoloLens 2 that is purposebuilt for personnel in dirty, loud, and safetycontrolled work site environments.

\$5,199

\$3,500

\$4,950

https://www.microsoft.com/en-us/hololens/buy

Università Magic Leap, since 2018 - Magic Leap 2 in 2022

https://www.magicleap.com/magic-leap-2

^M Università Magic Leap 2 – Immersive Enterprise AR Device

Scalable

Magic Leap 2 is built to support scalable augmented reality (AR) solutions necessitating multiple simultaneous users.

Integrative

Magic Leap 2 is purpose-built on an open platform to integrate with leading enterprise multi-device management (MDM) systems.

Secure

Store your data anywhere and use any preferred cloud setup. Magic Leap 2 lets users retain control of their data and is compatible with leading enterprise security protocols.

https://www.magicleap.com/en-us/

Università di Catania Meta's Project Aria

Aria Research Kit

For approved research partners, Meta offers a kit that includes Project Aria glasses and SDK, so that researchers can conduct independent studies and help shape the future of AR.

→ LEARN MORE ABOUT PARTNERING WITH PROJECT ARIA

https://www.xreal.com/

Università di Catania Apple Vision Pro

Vision Pro

https://www.apple.com/apple-vision-pro/

Too Many Devices?

towards standardization...

Unified API supported by many AR and VR devices

XR APPLICATIONS

Head & Hand Pose Information Controller Input State Display Configuration

Image(s) to Display Audio Haptic Responses

XR PLATFORMS & DEVICES

https://www.khronos.org/openxr/

"The Snapdragon Spaces XR Developer Platform reduces developer friction by providing a uniform set of augmented reality features independent of device manufacturers. This allows developers to seamlessly blend the lines between our physical and digital realities and transform the world around us in ways limited only by our imaginations."

https://www.qualcomm.com/products/features/snapdragon-spaces-xr-platform

What's Next?

An Outlook into the Future

Università What's Relevant in Egovision? A top-down approach

Università di Catania An Outlook into the Future of Egocentric Vision

An Outlook into the Future of Egocentric Vision

2.1 EGO-Home

2.2 EGO-Worker

2.5 EGO-Designer

4.8 Hand and Hand-Object Interactions 30

Designing and building tools able to support human

activities, improve quality of life, and enhance individ-

uals' abilities to achieve their goals is the ever-lasting

aspiration of our species. Among all inventions, digital

computing has already had a revolutionary effect on human history. Of particular note is mobile technology,

currently integrated in our lives through hand-held de-

vices, i.e. mobile smart phones. These are nowadays the

de facto for outdoor navigation, capturing static and

moving footage of our everyday and connecting us to

next-version of such mobile technology — wearable com-

puting, for a considerable amount of time. Imaginations

However, humans have been dreaming about the

both familiar and novel connections and experiences.

2.3 EGO-Tourist

Received: date / Accepted: date

Abstract What will the future be? We wonder! In this survey, we explore the gap between current research in egocentric vision and the ever-anticipated future, where wearable computing, with outward facing cameras and digital overlays, is expected to be integrated in our every day lives. To understand this gap, the article starts by envisaging the future through character-based stories, showcasing through examples the limitations of current technology. We then provide a mapping between this future and previously defined research tasks. For each task, we survey its seminal works, current stateof-the-art methodologies and available datasets, then reflect on shortcomings that limit its applicability to future research. Note that this survey focuses on software models for egocentric vision, independent of any specific hardware. The paper concludes with recommendations for areas of immediate explorations so as to unlock our path to the future always-on, personalised and life-enhancing egocentric vision.

Keywords Egocentric Vision, Future, Survey, Localisation, Scene Understanding, Recognition, Anticipation, Gaze Prediction, Social Understanding, Body Pose Estimation, Hand and Hand-Object Interaction, Person Identification, Summarisation, Dialogue, Privacy

Contents

- 1
 Introduction
 1

 2
 Imagining the Future
 2
- *: Equal Contribution/First Author
- [†]: Equal Senior Author

C. Plizzari, G. Goletto and T. Tommasi, Politecnico di Torino, Italy · A. Furnari, F. Ragusa and G. M. Farinella, University of Catania, Italy · S. Bansal and D. Damen, University of Bristol, UK. E-mail: Tatiana.Tommasi@polito.it

OpenReview.net

An Outlook into the Future of Egocentric Vision 🛛 🔤

<u>ଟ</u> 💼

Comment

Cí 💼

Chiara Plizzari, Gabriele Goletto, Antonino Furnari, Siddhant Bansal, Francesco Ragusa, Giovanni Maria Farinella, Dima Damen, Tatiana Tommasi

14 Aug 2023 OpenReview Archive Direct Upload Readers: 🚱 Everyone Show Revisions

Abstract: What will the future be? We wonder!

In this survey, we explore the gap between current research in egocentric vision and the ever-anticipated future, where wearable computing, with outward facing cameras and digital overlays, is expected to be integrated in our every day lives. To understand this gap, the article starts by envisaging the future through character-based stories, showcasing through examples the limitations of current technology. We then provide a mapping between this future and previously defined research tasks. For each task, we survey its seminal works, current state-of-the-art methodologies and available datasets, then reflect on shortcomings that limit its applicability to future research. Note that this survey focuses on software models for egocentric vision, independent of any specific hardware. The paper concludes with recommendations for areas of immediate explorations so as to unlock our path to the future always-on, personalised and life-enhancing egocentric vision.

							A	dd Comment
Reply Type: all	✓ Author:	everybody 🗸	Visible To:	all readers 🗸	Hidden From:	nobody 🗸		6 Replies

🕒 Related work on modeling social interactions, especially multimodal dialogue agents

Jaewoo Ahn

18 Aug 2023 OpenReview Archive Paper22166 Comment Readers: 🔇 Everyone Show Revisions

Comment:

I've been reading your fascinating work and wanted to contribute a suggestion based on my recent research in multimodal dialogue agents.

In our recent paper [1], we explored the benefits of a multimodal approach to dialogue personalization. Our study showed that incorporating both text and images in defining a persona greatly enriched the dialogue agent's understanding and personalization capabilities. Specifically, the image modality (i.e., egocentric vision) allowed the dialogue agents to access and better understand their personal characteristics and experiences based on their "episodic memory".

Drawing from this, I propose that there is a strong case to be made for the integration of egocentric vision into the domain of personalized dialogue agent responses. Egocentric vision, being intrinsically tied to personal perspective and experience, can serve as a valuable addition to a persona's episodic memory. This integration can enable chatbots to generate more contextually aware, and personalized responses based on the visual experiences of a user. The fusion of such vision-based episodic memory with textual modalities can be also a promising avenue for future research in personalized dialogue agents.

[1] Ahn et al. MPCHAT: Towards Multimodal Persona-Grounded Conversation, ACL 2023 (https://aclanthology.org/2023.acl-long.189/)

Related work on egocentric full-body pose estimation

Jiaxi Jiang

17 Aug 2023 (modified: 17 Aug 2023) OpenReview Archive Paper22166 Comment 🛛 Readers: 🚱 Everyone 🚽 Show Revisions

Comment:

Thanks for the nice paper, that's awesome!

I would really appreciate if our work (AvatarPoser [1] and EgoPoser [2]) on the topic of egocentric full-body pose estimation can also be presented in this review paper.

https://arxiv.org/abs/2308.07123

1 Introduction

https://openreview.net/forum?id=V3974SUk1w

Università di Catania An Outlook into the Future – Futuristic Stories

Università di Catania From Narratives to Research Tasks

12 Egocentric Vision Research Tasks

- 1. Localisation
- 2. 3D Scene Understanding
- 3. Recognition
- 4. Anticipation
- 5. Gaze Understanding and Prediction
- 6. Social Behaviour Understanding
- 7. Full Body Pose Estimation
- 8. Hand and Hand-Object Interactions
- 9. Person Identification
- 10. Summarisation
- 11. Dialogue
- 12. Privacy

Università di Catania Links between Stories and Tasks

sociate story parts with research tasks (marked by section number) and later revisit the link between these

Table 1 General Egocentric Datasets - Collection Characteristics. [†]: For EGTEA, Audio was collected but not made public. *: For Ego4D, apart from RGB, the other modalities are present for subsets of the data.

Dataset	Settings	Signals	Hours	Sequences	AVG. video duration	Participants
MECCANO (Ragusa et al 2023b)	Industrial	RGB, depth, gaze	6.9	20	20.79 min	20
ADL (Pirsiavash and Ramanan 2012)	Daily activities	RGB	10.0	20	30.00 min	20
HOI4D (Liu et al 2022c)	Table-Top	RGB, depth	22.2	4000	0.33 min	9
EGTEA Gaze $+^{\dagger}$ (Li et al 2021a)	Kitchen	RGB, gaze	27.9	86	$19.53 \min$	32
UTE (Lee et al 2012)	Daily Activities	RGB	37.0	10	222.00 min	4
EGO-CH (Ragusa et al 2020a)	Cultural Sites	RGB	37.1	180	$12.37 \min$	70
FPSI (Fathi et al 2012a)	Recreational Site	RGB	42.0	8	315.00 min	8
KrishnaCam (Singh et al 2016a)	Daily Routine	RGB, GPS, acc	69.9	460	9.13 min	1
EPIC-KITCHENS-100 (Damen et al 2022)	Kitchens	RGB, audio	100.0	700	$8.57 \min$	37
Assembly101 (Sener et al 2022)	Industrial	RGB, multi-view	167.0	1425	7.10 min	53
Ego4D* (Grauman et al 2022)	Multi Domain	RGB, Audio, 3D, gaze, IMU, multi	3670.0	9650	24.11 min	931

Table 2 General Egocentric Datasets - Current set of annotations. *: For Ego4D, apart from narrations, the remainingannotations are only available for subsets of the dataset depending on the benchmark

Dataset	Annotations
MECCANO (Ragusa et al 2023b)	Temporal action segments, hand & object bounding boxes, hand-object interactions, next-active object
ADL (Pirsiavash and Ramanan 2012)	Temporal action segments, objects bounding boxes, hand-object interactions
HOI4D (Liu et al 2022c)	Temporal action segments, 3D hand poses and object poses, panoptic and motion segmentation, object meshes, scene point clouds
EGTEA Gaze+ (Li et al 2021a)	Temporal action segments, hand masks, gaze
UTE (Lee et al 2012)	Text descriptions, object segmentations
EGO-CH (Ragusa et al 2020a)	Temporal locations, object bounding boxes, surveys, object masks
FPSI (Fathi et al 2012a)	Temporal social interaction segments
KrishnaCam (Singh et al 2016a)	Motion classes, virtual webcams, popular locations
EPIC-KITCHENS-100 (Damen et al 2022)	Temporal action video segments, Temporal audio segments, narrations, hand and objects masks, hand-object interactions, camera poses
Assembly101 (Sener et al 2022)	Temporal action segments, 3D hand poses
Ego4D* (Grauman et al 2022)	Narrations, Temporal action segments, moment queries, speaker labels, diarisation, hand bounding boxes, time to contact, active objects bounding boxes, trajectories, next-active objects bounding boxes

Table 3 General Egocentric Datasets - Current set of tasks: 4.1 Localisation, 4.2 3D Scene Understanding, 4.3 Recognition,
4.4 Anticipation, 4.5 Gaze Understanding and Prediction, 4.6 Social Behaviour Understanding, 4.7 Full-body Pose Estimation,
4.8 Hand and Hand-Object Interactions, 4.9 Person Identification, 4.10 Summarisation, 4.11 Dialogue, 4.12 Privacy.

Task	4 1	4.9	19	4.4	45	16	47	19	4.0	4 10	1 1 1	4 1 9
Dataset		4.2	4.3	4.4	4.0	4.0	4.7	4.0	4.9	4.10	4.11	4.14
MECCANO (Ragusa et al 2023b)			\checkmark	\checkmark	\checkmark			\checkmark				
ADL (Pirsiavash and Ramanan 2012)			\checkmark	\checkmark						\checkmark		
HOI4D (Liu et al $2022c$)								\checkmark				
EGTEA Gaze+ (Li et al $2021a$)			\checkmark	\checkmark	\checkmark			\checkmark				
UTE (Lee et al 2012)								\checkmark		\checkmark		
EGO-CH (Ragusa et al 2020a)												
FPSI (Fathi et al 2012a)						\checkmark				\checkmark		\checkmark
KrishnaCam (Singh et al 2016a)				\checkmark								
EPIC-KITCHENS-100 (Damen et al 2022)		\checkmark	\checkmark	\checkmark				\checkmark			\checkmark	\checkmark
Assembly101 (Sener et al 2022)			\checkmark					\checkmark				
Ego4D (Grauman et al 2022)			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	

It's an exciting time for wearable devices & egocentric vision!

Hardware is increasingly available as big tech gests interested.

Large datasets and pre-defined challenges can help get started to explore the field

Francesco Ragusa

First Person Vision@Image Processing Laboratory - <u>http://iplab.dmi.unict.it/fpv</u>

Next Vision - http://www.nextvisionlab.it/

Department of Mathematics and Computer Science - University of Catania

francesco.ragusa@unict.it - https://francescoragusa.github.io/

- 1) Part I: History and motivations [09.00 10.30]
 - a) Agenda of the tutorial;
 - b) Definitions, motivations, history and research trends of First Person (egocentric) Vision;
 - c) Seminal works in First Person (Egocentric) Vision;
 - d) Differences between Third Person and First Person Vision;
 - e) First Person Vision datasets;
 - f) Wearable devices to acquire/process first person visual data;
 - g) Main research trends in First Person (Egocentric) Vision;

Coffee Break [10.30 - 10.45]

Keynote presentation: Gerhard Rigoll [10.45 – 12.00]

- 1) Part II: Fundamental tasks for First Person Vision systems [12.00 13.00]
 - a) Localization;
 - b) Hand/Object Detection;
 - c) Action/Activity Recognition;
 - d) Egocentric Human-Object Interaction;
 - e) Anticipation;
 - f) Industrial Applications;
 - g) Conclusion.